

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2023-24 and onwards)

Department of Computer Science and Engineering

3rd year Course structure

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

B.Tech. – III Year I Semester

S.No	Category	Title	L	T	P	C
1	Professional Core	Data Warehousing and Data Mining	3	0	0	3
2	Professional Core	Computer Networks	3	0	0	3
3	Professional Core	Formal Languages and Automata Theory	3	0	0	3
4	Professional Elective-I	1. Object Oriented Analysis and Design 2. Artificial Intelligence 3. Microprocessors & Microcontrollers 4. Quantum Computing 5. 12-week MOOC Swayam/ NPTEL course recommended by the BoS	3	0	0	3
5	Open Elective-I	OR Entrepreneurship Development & Venture Creation	3	0	0	3
6	Professional Core	Data Mining Lab	0	0	3	1.5
7	Professional Core	Computer Networks Lab	0	0	3	1.5
8	Skill Enhancement course	Full Stack development-2	0	1	2	2
9	Engineering Science	User Interface Design using Flutter / SWAYAM Plus - Android Application Development (with Flutter)	0	0	2	1
10	Evaluation of Community Service Internship		-	-	-	2
Total			15	1	10	23
MC	Minor Course (Student may select from the same specialized minors pool)		3	0	3	4.5
MC	Minor Course through SWAYAM/NPTEL (minimum 12 week, 3 credit course)		3	0	0	3
HC	Honors Course (Student may select from the same honors pool)		3	0	0	3
HC	Honors Course (Student may select from the same honors pool)		3	0	0	3

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

B.Tech. III Year II Semester

S.No.	Category	Title	L	T	P	C
1	Professional Core	Compiler Design	3	0	0	3
2	Professional Core	Cloud Computing	3	0	0	3
3	Professional Core	Cryptography & Network Security	3	0	0	3
4	Professional Elective-II	Software Testing Methodologies Cyber Security DevOps Machine Learning 12-week MOOC Swayam/NPTEL course recommended by the BoS		3	0	0
5	Professional Elective-III	Software Project Management Mobile Adhoc Networks Natural Language Processing Big Data Analytics Distributed Operating System 12 week MOOC Swayam/NPTEL course recommended by the BoS		3	0	0
6	Open Elective – II	Elective from Other Branch	3	0	0	3
7	Professional Core	Cloud Computing Lab	0	0	3	1.5
8	Professional Core	Cryptography & Network Security Lab	0	0	3	1.5
9	Skill Enhancement course	Soft skills / SWAYAM Plus - 21st Century Employability Skills	0	1	2	2
10	Audit Course	Technical Paper Writing & IPR	2	0	0	-
Total			20	1	08	23
Mandatory Industry Internship / Mini Project of 08 weeks duration during summer vacation						
MC	Minor Course (Student may select from the same specialized minors pool)		3	0	3	4.5
MC	Minor Course (Student may select from the same specialized minors pool)		3	0	0	3
HC	Honors Course (Student may select from the same honors pool)		3	0	0	3
HC	Honors Course (Student may select from the honors pool)		3	0	0	3

* Under Industry Internship interested students can pursue SWAYAM Plus courses viz., Hands-on Masterclass on Data Analytics OR Artificial Intelligence for Real-World Application

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Open Electives offered to other department students:

Open Elective I: Principles of Operating Systems/ Computer Organization and Architecture

Open Elective II: Principles of Database Management Systems

Open Elective III: Object Oriented Programming Through Java

Open Elective IV: Principles of Software Engineering /Computer Networks

Minor Engineering

Note:

1. *To obtain Minor Engineering, students need to obtain 18 credits by successfully completing any of the following courses in the concern stream.*
2. *During Minor/Honors Course selection, there should not be any overlapping with Regular/Major/OPEN Electives*

Minor in CSE

- | | |
|--|--------------------|
| 1. Principles of Database Management Systems | 3-0-3-4.5 (II-II) |
| 2. Principles of Software Engineering | 3-0-0-3 (III-I) |
| 3. Advanced Data Structures & Algorithm Analysis | 3-0-3-4.5 (III-II) |
| 4. Principles of Operating Systems | 3-0-0-3 (IV-I) |

Any of the following 12 Week 3 credit NPTEL MOOC Courses

5. Artificial Intelligence: Knowledge Representation and Reasoning
6. Computer Networks and Internet Protocol
7. Machine Learning and Deep Learning - Fundamentals and Applications
8. Fundamentals of Object-Oriented Programming
9. Discrete Mathematics for CS
10. Software Engineering

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

COURSES OFFERED FOR HONORS DEGREE IN CSE

Note: To obtain an Honor's degree, students need to obtain 18 credits by successfully completing any of the following courses in the concern stream.

1. Social Network Analysis	12 Week 3 Credit Course, MOOCS
2. Applied Linear Algebra in AI & ML	12 Week 3 Credit Course, MOOCS
3. Design & Implementation of Human-Computer Interfaces – NPTEL MOOCS	
4. Cryptography and Network Security	12 Week 3 Credit Course, MOOCS
5. Privacy and Security in Online Social Media	12 Week 3 Credit Course, MOOCS
6. Deep Learning for Natural Language Processing -	12 Week 3 Credit Course, MOOCS
7. Computer Vision	- 12 Week 3 Credit Course, MOOCS
8. Applied Time-Series Analysis	12 Week 3 Credit Course, MOOCS
9. Parallel Computer Architecture	12 Week 3 Credit Course, MOOCS
10. Reinforcement Learning	12 Week 3 Credit Course, MOOCS
11. GPU Architecture and Programming	12 Week 3 Credit Course, MOOCS
12. Computational Complexity	12 Week 3 Credit Course, MOOCS
13. Quantum Algorithms and Cryptography	12 Week 3 Credit Course, MOOCS
14. Unmanned Aerial Systems & Robotics	12 Week 3 Credit Course, MOOCS
15. Prompt Engineering for Generative AI	(III - II)
1. Computer Networks	3-0-0-3
2. Artificial Intelligence	3-0-0-3
3. Cyber Security	3-0-0-3
4. Introduction to Data Science	3-0-3-4.5
5. Data Warehousing and Data Mining	3-0-0-3
6. Object Oriented Programming Through Java	3-0-3-4.5
7. Cloud computing	3-0-0-3
8. Graph Theory	3-0-0-3
9. Data Analytics with Python	
10. Foundations of Cryptography	

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year I Semester	DATA WAREHOUSING & DATA MINING	L	T	P	C
		3	0	0	3

Pre-requisites: Data Structures, Algorithms, Probability & Statistics, Data Base Management Systems

Course Objectives: The main objective of the course is to

- Introducing basic concepts and techniques of data warehousing and data mining
- Examine the types of data to be mined and apply pre-processing methods on raw data
- Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms.

UNIT-I: Data Warehousing and Online Analytical Processing: Basic concepts, Data Warehouse Modeling: Data Cube and OLAP, Comparison of OLAP with OLTP, Data Warehouse Design and Usage, Data Warehouse Implementation, Cloud Data Warehouse, Data Mining and Pattern Mining, Technologies, KDD Process, Applications, Major issues, Data Objects & Attribute Types, , Measuring Data Similarity and Dissimilarity. (Textbook- 1)

15 H

UNIT II: Data Preprocessing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization. (Textbook- 1) 12 H

UNIT-III: Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Attribute Selection Measures, Tree Pruning, Scalability and Decision Tree Induction, Bayesian Classification Methods: Bayes Theorem, Naïve Bayes Classification, Rule-Based Classification (Text Book- 2) 11 H

UNIT-IV: Association Analysis: Problem Definition, Frequent Itemset Generation, Concept of Hierarchy Generation , Rule Generation: Confident Based Pruning, Rule Generation in Apriori Algorithm, Compact Representation of frequent item sets, FP-Growth Algorithm. (Text Book- 2)

10 H

UNIT-V: Cluster Analysis: Overview, Basics and Importance of Cluster Analysis, Clustering techniques, Different Types of Clusters; K-means: The Basic K-means Algorithm, K-means Additional Issues, Bi-secting K Means, Agglomerative Hierarchical Clustering: Basic Agglomerative Hierarchical Clustering Algorithm DBSCAN: Traditional Density Center-Based Approach, DBSCAN Algorithm, Strengths and Weaknesses. (Text Book- 2) 12 H

Total No of Hours: 60 H

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Text Books:

1. Data Mining concepts and Techniques, 3rd edition, Jiawei Han, Michel Kamber, Elsevier, 2011.
2. Introduction to Data Mining: Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Pearson, 2012.

Reference Books:

1. Data Mining: Vikram Pudi and P. Radha Krishna, Oxford Publisher.
2. Data Mining Techniques, Arun K Pujari, 3rd edition, Universities Press, 2013.
3. (NPTEL course by Prof. Pabitra Mitra)

http://onlinecourses.nptel.ac.in/noc17_mg24/preview

http://www.saedsayad.com/data_mining_map.htm

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year I Semester	COMPUTER NETWORKS	L	T	P	C
		3	0	0	3

Course Objectives:

- To provide insight about networks, topologies, and the key concepts.
- To gain comprehensive knowledge about the layered communication architectures (OSI and TCP/IP) and its functionalities.
- To understand the principles, key protocols, design issues, and significance of each layer in ISO and TCP/IP.
- To know the basic concepts of network services and various network applications.

UNIT I: Introduction: Network Types, LAN, MAN, WAN, Network Topologies Reference models- The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models, OSI Vs TCP/IP.

Physical Layer –Introduction to Guided Media- Twisted-pair cable, Coaxial cable and Fiber optic cable and introduction about unguided media. **[Text book 1] 10H**

UNIT II: Data link layer: Design issues, **Framing**: fixed size framing, variable size framing, flow control, error control, error detection and correction codes, CRC, Checksum: idea, one's complement internet checksum, services provided to Network Layer, **Elementary Data Link Layer protocols**: simplex protocol, Simplex stop and wait, Simplex protocol for Noisy Channel.

Sliding window protocol: One bit, Go back N, Selective Repeat-Stop and wait protocol, Data link layer in HDLC, Point to point protocol (PPP) **[Text book 1] 14H**

UNIT – III: Media Access Control: Random Access: ALOHA, Carrier sense multiple access (CSMA), CSMA with Collision Detection, CSMA with Collision Avoidance, **Controlled Access:** Reservation, Polling, Token Passing, **Channelization:** frequency division multiple Access (FDMA), time division multiple access (TDMA), code division multiple access(CDMA).

Wired LANs: Ethernet, Ethernet Protocol, Standard Ethernet, Fast Ethernet (100 Mbps), Gigabit Ethernet, 10 Gigabit Ethernet. **[Text book 1] 13H**

UNIT – IV: The Network Layer Design Issues – Store and Forward Packet Switching-Services Provided to the Transport layer- Implementation of Connectionless Service-Implementation of Connection Oriented Service- Comparison of Virtual Circuit and Datagram Networks, Routing Algorithms-The Optimality principle-shortest path, Flooding, Distance vector, Link state, Hierarchical, Congestion Control Algorithms-General principles of congestion control, Congestion prevention polices, Approaches to Congestion Control-Traffic Aware Routing- Admission Control- Traffic Throttling-Load Shedding. Traffic Control Algorithm-Leaky bucket & Token bucket.

Internet Working: How networks differ- How networks can be connected- Tunnelling, internetwork routing-, Fragmentation, network layer in the internet – IP protocols-IP Version 4 protocol-IPV4 Header Format, IP addresses, Class full Addressing, CIDR, Subnets-IP Version 6-

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

The main IPV6 header, Transition from IPV4 to IPV6, Comparison of IPV4 & IPV6. [Text book-2]

15H

UNIT –V: The Transport Layer: Transport layer protocols: Introduction-services- port number-User data gram protocol-User datagram-UDP services-UDP applications-Transmission control protocol: TCP services- TCP features- Segment- A TCP connection- windows in TCP- flow control-Error control, Congestion control in TCP.

Application Layer -- World Wide Web: HTTP, Electronic Mail-Architecture- web based mail- email security- TELENET-local versus remote Logging-Domain Name System.

[Text Book-2]

12H

Total No. of Hours:64

Text Books:

1. Computer Networks, Andrew S Tanenbaum, Fifth Edition. Pearson Education/PHI
2. Data Communications and Networks, Behrouz A. Forouzan, Fifth Edition TMH.

References Books:

1. Data Communications and Networks- Achut S Godbole, AtulKahate
2. Computer Networks, Mayank Dave, CENGAGE

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)
(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)
Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year I Semester	FORMAL LANGUAGES AND AUTOMATA THEORY	L	T	P	C
		3	0	0	3

Course Objectives:

- To learn fundamentals of Regular and Context Free Grammars and Languages
- To understand the relation between Regular Language and Finite Automata and machines
- To learn how to design Automata's and machines as Acceptors, Verifiers and Translators
- To understand the relation between Contexts free Languages, PDA and TM
- To learn how to design PDA as acceptor and TM as Calculators

UNIT I

Finite Automata: Need of Automata theory, Central Concepts of Automata Theory, Automation, Finite Automation, Transition Systems, Acceptance of a String, DFA, Design of DFAs, Design of NFA, Equivalence of DFA and NFA, Conversion of NFA into DFA, Finite Automata with ϵ -Transitions, Minimization of Finite Automata, Finite Automata with output-Mealy and Moore Machines, Applications and Limitation of Finite Automata.

[Text Book -1] 15 H

UNIT II

Regular Expressions, Regular Sets, Identity Rules, Equivalence of two RE, Manipulations of REs, Finite Automata and Regular Expressions, Inter Conversion, Equivalence between FA and RE, Pumping Lemma of Regular Sets, Closure Properties of Regular Sets, Grammars, Classification of Grammars, Chomsky Hierarchy Theorem, Right and Left Linear Regular Grammars, Equivalence between RG and FA, Inter Conversion.**[Text Book -1] 10 H**

UNIT III

Formal Languages, Context Free Grammar, Leftmost and Rightmost Derivations, Parse Trees, Ambiguous Grammars, Simplification of Context Free Grammars-Elimination of Useless Symbols, ϵ -Productions and Unit Productions, Normal Forms-Chomsky Normal Form and Greibach Normal Form, Pumping Lemma, Closure Properties, Applications of Context Free Grammars.**[Text Book -1] 12 H**

UNIT IV

Pushdown Automata, Definition, Model, Graphical Notation, Instantaneous Description, Language Acceptance of Pushdown Automata, Design of Pushdown Automata, Deterministic and Non – Deterministic Pushdown Automata, Equivalence of Pushdown Automata and Context Free Grammars, Conversion, Two Stack Pushdown Automata, Application of Pushdown Automata.**[Text Book -1] 12 H**

UNIT V

Turning Machine: Definition, Model, Representation of TMs-Instantaneous Descriptions, Transition Tables and Transition Diagrams, Language of a TM, Design of TMs, Types of TMs, Church's Thesis, Universal and Restricted TM, Decidable and Un-decidable Problems, Halting Problem of TMs, Post's Correspondence Problem, Modified PCP, Classes of P and NP, NP-Hard and NP-Complete Problems.**[Text Book-1] 11H**

Total No. of Hours:60

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Text Books:

1. Introduction to Automata Theory, Languages and Computation, J. E. Hopcroft, R. Motwani and J. D. Ullman, 3rd Edition, Pearson, 2008
2. Theory of Computer Science-Automata, Languages and Computation, K. L. P. Mishra and N. Chandrasekharan, 3rd Edition, PHI, 2007

Reference Books:

1. Elements of Theory of Computation, Lewis H.P. & Papadimitriou C.H., Pearson /PHI
2. Theory of Computation, V. Kulkarni, Oxford University Press, 2013
3. Theory of Automata, Languages and Computation, Rajendra kumar, McGraw Hill, 2014

e-Resources:

- 1) <https://nptel.ac.in/courses/106/104/106104028/>

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year I Semester	OBJECT ORIENTED ANALYSIS AND DESIGN[PE1]	L	T	P	C	Co
		3	0	0	3	

Course Objectives: The main objective is the students' to

- Become familiar with all phases of OOAD.
- Master the main features of the UML.
- Master the main concepts of Object Technologies and how to apply them at work and develop the ability to analyze and solve challenging problems in various domains.
- Learn the Object design Principles and understand how to apply them towards Implementation.

UNIT I:

Introduction: The Structure of Complex systems, The Inherent Complexity of Software, Attributes of Complex System, Organized and Disorganized Complexity, Bringing Order to Chaos, Designing Complex Systems. **Case Study:** System Architecture: Satellite-Based Navigation 10H

UNIT II:

Introduction to UML: Importance of modeling, principles of modeling, object-oriented modeling, conceptual model of the UML, Architecture, and Software Development Life Cycle.

Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams. **Case Study:** Control System: Traffic Management. 12H

UNIT III:

Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams.

Advanced Structural Modeling: Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages. **Case Study:** AI: Cryptanalysis. 13H

UNIT IV:

Basic Behavioral Modeling-I: Interactions, Interaction diagrams Use cases, Use case Diagrams, Activity Diagrams. **Case Study:** Web Application: Vacation Tracking System 12H

UNIT V:

Advanced Behavioral Modeling: Events and signals, state machines, processes and Threads, time and space, state chart diagrams. **Architectural Modeling:** Component, Deployment, Component diagrams and Deployment diagrams. **Case Study:** Weather Forecasting 13H

Text Books:

1. Grady BOOCHE, Robert A. Maksimchuk, Michael W. ENGLE, Bobbi J. Young, Jim Conallen, Kellia Houston , "Object- Oriented Analysis and Design with Applications", 3rd edition, 2013, PEARSON.
2. Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language User Guide, Pearson Education.

Reference Books:

1. Meilir Page-Jones: Fundamentals of Object-Oriented Design in UML, Pearson Education.
2. Pascal Roques: Modeling Software Systems Using UML2, WILEY- Dreamtech India Pvt. Ltd.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

3. Atul Kahate: Object Oriented Analysis & Design, The McGraw-Hill Companies.
4. Appling UML and Patterns: An introduction to Object – Oriented Analysis and Design and Unified Process, Craig Larman, Pearson Education.

III Year I Semester	ARTIFICIAL INTELLIGENCE[PE1]	L	T	P	C
		3	0	0	3

Pre-requisite:

1. Knowledge in Computer Programming.
2. A course on “Mathematical Foundations of Computer Science”.
3. Background in linear algebra, data structures and algorithms, and probability.

Course Objectives:

1. The student should be made to study the concepts of Artificial Intelligence.
2. The student should be made to learn the methods of solving problems using Artificial Intelligence.
3. The student should be made to introduce the concepts of Expert Systems.
4. To understand the applications of AI, namely game playing, theorem proving, and machine learning.
5. To learn different knowledge representation techniques

UNIT - I

Introduction: AI problems, foundation of AI and history of AI intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation. **[Text Book -1] 10H**

UNIT - II

Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search. Search with partial information (Heuristic search) Hill climbing, A*, AO* Algorithms, Problem reduction, Game Playing-Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions.

[Text Book -1] 12H

UNIT - III

Representation of Knowledge: Knowledge representation issues, predicate logic- logic programming, semantic nets- frames and inheritance, constraint propagation, representing knowledge using rules, rules-based deduction systems. Reasoning under uncertainty, review of probability, Bayes' probabilistic inferences and Dempster Shafer theory.

[Textbook -1] 12 H

UNIT - IV

Logic concepts: First order logic. Inference in first order logic, propositional vs. first order inference, unification & lifts forward chaining, Backward chaining, Resolution, learning from observation Inductive learning, Decision trees, Explanation based learning, Statistical Learning methods, Reinforcement Learning. **[Textbook -2] 10 H**

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

UNIT - V

Expert Systems: Architecture of expert systems, Roles of expert systems – Knowledge Acquisition Meta knowledge Heuristics. Typical expert systems – MYCIN, DART, XCON: Expert systems shells.

[Text Book -2]

10 H

Total No. of Hours:54

Textbooks:

1. S. Russel and P. Norvig, “Artificial Intelligence – A Modern Approach”, Second Edition, Pearson Education.
2. Kevin Night and Elaine Rich, Nair B., “Artificial Intelligence (SIE)”, Mc Graw Hill

Reference Books:

1. David Poole, Alan Mackworth, Randy Goebel,” Computational Intelligence: a logical approach”, Oxford University Press.
2. G. Luger, “Artificial Intelligence: Structures and Strategies for complex problemsolving”, Fourth Edition, Pearson Education.
3. J. Nilsson, “Artificial Intelligence: A new Synthesis”, Elsevier Publishers.
4. Artificial Intelligence, SarojKaushik, CENGAGE Learning.

Online Learning Resources:

1. <https://ai.google/>
2. https://swayam.gov.in/nd1_noc19_me71/preview

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year I Semester	QUANTUM COMPUTING[PE1]	L	T	P	C
		3	0	0	3

Course Objectives:

To introduce the fundamentals of quantum computing, the problem-solving approach using finite dimensional mathematics

UNIT - I

History of Quantum Computing: Importance of Mathematics, Physics and Biology. Introduction to Quantum Computing: Bits Vs Qubits, Classical Vs Quantum logical operations **10H**

UNIT - II

Background Mathematics: Basics of Linear Algebra, Hilbert space, Probabilities and measurements.

Background Physics: Paul's exclusion Principle, Superposition, Entanglement and super-symmetry, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis. Background Biology: Basic concepts of Genomics and Proteomics (Central Dogma) **15H**

UNIT - III

Qubit: Physical implementations of Qubit. Qubit as a quantum unit of information. The Bloch sphere Quantum Circuits: single qubit gates, multiple qubit gates, designing the quantum circuits. Bell states.

12H

UNIT - IV

Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor's factorization algorithm, Grover's search algorithm. **12H**

UNIT - V

Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation. Quantum Information and Cryptography: Comparison between classical and quantum information theory. Quantum Cryptography, Quantum teleportation **14H**

Text Books:

1. Quantum Computation and Quantum Information, Nielsen M. A., Cambridge
2. Programming Quantum Computers, Essential Algorithms and Code Samples, Eric R Johnson, Nic Harrigan, Mercedes Ginemo, Segovia, Orelly

Reference Books:

1. Quantum Computing for Computer Scientists, Noson S. Yanofsk, Mirco A. Mannucci
2. Principles of Quantum Computation and Information, Benenti G., Casati G. and Strini G., Vol.I: Basic Concepts, Vol II
3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year I Semester	DATA MINING LAB	L	T	P	C
		0	0	3	1.5

Pre-requisites: Data Base Management Systems, Python Programming

Course Objectives: The main objective of the course is to

- Inculcate Conceptual, Logical, and Physical design of Data Warehouses OLAP applications and OLAP deployment
- Design a data warehouse or data mart to present information needed by management in a form that is usable
- Emphasize hands-on experience working with all real data sets.
- Test real data sets using popular data mining tools such as WEKA and Python Libraries
- Develop ability to design various algorithms based on data mining tools.

Software Requirements: WEKA Tool/Python/R-Tool/Rapid Tool/Oracle Data mining

List of Experiments:

1. Creation of a Data Warehouse.

- Build Data Warehouse/Data Mart (using open-source tools like Pentaho Data Integration Tool, Pentaho Business Analytics; or other data warehouse tools like Microsoft-SSIS, Informatica, Business Objects,etc.,)
- Design multi-dimensional data models namely Star, Snowflake and Fact Constellation schemas for any one enterprise (ex. Banking, Insurance, Finance, Healthcare, manufacturing, Automobiles, sales etc).
- Write ETL scripts and implement using data warehouse tools.
- Perform Various OLAP operations such slice, dice, roll up, drill up and pivot

2. Explore machine learning tool “WEKA”

- Explore WEKA Data Mining/Machine Learning Toolkit.
- Downloading and/or installation of WEKA data mining toolkit.
- Understand the features of WEKA toolkit such as Explorer, Knowledge Flow interface, Experimenter, command-line interface.
- Navigate the options available in the WEKA (ex. Select attributes panel, Preprocess panel, Classify panel, Cluster panel, Associate panel and Visualize panel)
- Study the arff file format Explore the available data sets in WEKA. Load a data set (ex. Weather dataset, Iris dataset, etc.)
- Load each dataset and observe the following:
 1. List the attribute names and theytypes
 2. Number of records in each dataset
 3. Identify the class attribute (if any)
 4. Plot Histogram
 5. Determine the number of records for each class.
 6. Visualize the data in various dimensions

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

3. Perform data preprocessing tasks and demonstrate performing association rule mining on data sets

- Explore various options available in Weka for preprocessing data and apply Unsupervised filters like Discretization, Resample filter, etc. on each dataset
- Load weather, nominal, Iris, Glass datasets into Weka and run Apriori Algorithms with different support and confidence values.
- Study the rules generated. Apply different discretization filters on numerical attributes and run the Apriori association rule algorithm. Study the rules generated.
- Derive interesting insights and observe the effect of discretization in the rule generation process.

4. Demonstrate performing classification on data sets Weka/R

- Load each dataset and run ID3, J48 classification algorithm. Study the classifier output. Compute entropy values, Kappa statistic.
- Extract if-then rules from the decision tree generated by the classifier. Observe the confusion matrix.
- Load each dataset into Weka/R and perform Naïve-bayes classification and k-Nearest Neighbour classification. Interpret the results obtained.
- Plot ROC Curves
- Compare classification results of ID3, J48, Naïve-Bayes and k-NN classifiers for each dataset, and deduce which classifier is performing best and poor for each dataset and justify.

5. Demonstrate performing clustering of data sets

- Load each dataset into Weka/R and run simple k-means clustering algorithm with different values of k (number of desired clusters).
- Study the clusters formed. Observe the sum of squared errors and centroids and derive insights.
- Explore other clustering techniques available in Weka/R.
- Explore visualization features of Weka/R to visualize the clusters. Derive interesting insights and explain.

6. Demonstrate knowledge flow application on data sets into Weka/R

- Develop a knowledge flow layout for finding strong association rules by using Apriori, FP Growth algorithms
 - Set up the knowledge flow to load an ARFF (batch mode) and perform a cross validation using J48 algorithm
 - Demonstrate plotting multiple ROC curves in the same plot window by using j48 and Random forest tree
7. Demonstrate ZeroR technique on Iris dataset (by using necessary preprocessing technique(s)) and share your observations
 8. Write a java program to prepare a simulated data set with unique instances.
 9. Write a Python program to generate frequent item sets / association rules using Apriori algorithm
 10. Write a program to calculate chi-square value using Python/R. Report your observation.

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

11. Write a program of Naive Bayesian classification using Python/R programming language.
12. Implement a Java/R program to perform Apriori algorithm
13. Write a R program to cluster your choice of data using simple k-means algorithm using JDK
14. Write a program of cluster analysis using simple k-means algorithm Python/R programming language.
15. Write a program to compute/display dissimilarity matrix (for your own dataset containing at least four instances with two attributes) using Python
16. Visualize the datasets using matplotlib in python/R.(Histogram, Box plot, Bar chart, Pie chart etc.,)

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year I Semester	COMPUTER NETWORKS LAB	L	T	P	C
		0	0	3	1.5

Course Objectives: Learn basic concepts of computer networking and acquire practical notions of protocols with the emphasis on TCP/IP. A lab provides a practical approach to Ethernet/Internet networking: networks are assembled, and experiments are carried out to understand the layered architecture and how do some important protocols work

List of Experiments:

1. Study of Network devices in detail and connect the computers in Local Area Network.
2. Write a Program to implement the data link layer farming methods such as
 - i) Character stuffing ii) bit stuffing.
3. Write a Program to implement data link layer farming method checksum.
4. Write a program for Hamming Code generation for error detection and correction.
5. Write a Program to implement on a data set of characters the three CRC polynomials – CRC 12, CRC 16 and CRC CCIP.
6. Write a Program to implement Sliding window protocol for Goback N.
7. Write a Program to implement Sliding window protocol for Selective repeat.
8. Write a Program to implement Stop and Wait Protocol.
9. Write a program for congestion control using leaky bucket algorithm
10. Write a Program to implement Dijkstra's algorithm to compute the Shortest path through a graph.
11. Write a Program to implement Distance vector routing algorithm by obtaining routing table at each node (Take an example subnet graph with weights indicating delay between nodes).
12. Write a Program to implement Broadcast tree by taking subnet of hosts.
13. Wireshark
 - i. Packet Capture Using Wire shark
 - ii. Starting Wire shark
 - iii. Viewing Captured Traffic
 - iv. Analysis and Statistics & Filters.
14. How to run Nmap scan
15. Operating System Detection using Nmap
16. Do the following using NS2 Simulator
 - i. NS2 Simulator-Introduction
 - ii. Simulate to Find the Number of Packets Dropped
 - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
 - iv. Simulate to Find the Number of Packets Dropped due to Congestion
 - v. Simulate to Compare Data Rate& Throughput.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year I Semester	FULL STACK DEVELOPMENT - 2	L	T	P	C
		0	1	2	2

Course Objectives:

The main objectives of the course are to

- Make use of router, template engine and authentication using sessions to develop application in ExpressJS.
- Build a single page application using RESTful APIs in ExpressJS
- Apply router and hooks in designing ReactJS application
- Make use of MongoDB queries to perform CRUD operations on document database

Experiments covering the Topics:

- ExpressJS – Routing, HTTP Methods, Middleware, Templating, Form Data
- ExpressJS – Cookies, Sessions, Authentication, Database, RESTful APIs
- ReactJS – Render HTML, JSX, Components – function & Class, Props and States, Styles, Respond to Events
- ReactJS – Conditional Rendering, Rendering Lists, React Forms, React Router, Updating the Screen
- ReactJS – Hooks, Sharing data between Components, Applications – To-do list and Quiz
- MongoDB – Installation, Configuration, CRUD operations, Databases, Collections and Records

Sample Experiments:

1. ExpressJS – Routing, HTTP Methods, Middleware.

- a) Write a program to define a route, Handling Routes, Route Parameters, Query Parameters and URL building.
- b) Write a program to accept data, retrieve data and delete a specified resource using http methods.
- c) Write a program to show the working of middleware.

2. ExpressJS – Templating, Form Data

- a) Write a program using templating engine.
- b) Write a program to work with form data.

3. ExpressJS – Cookies, Sessions, Authentication

- a) Write a program for session management using cookies and sessions.
- b) Write a program for user authentication.

4. ExpressJS – Database, RESTful APIs

- a) Write a program to connect MongoDB database using Mongoose and perform CRUD operations.
- b) Write a program to develop a single page application using RESTful APIs.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

5. ReactJS – Render HTML, JSX, Components – function & Class

- a) Write a program to render HTML to a web page.
- b) Write a program for writing markup with JSX.
- c) Write a program for creating and nesting components (function and class).

6. ReactJS – Props and States, Styles, Respond to Events

- a) Write a program to work with props and states.
- b) Write a program to add styles (CSS & Sass Styling) and display data.
- c) Write a program for responding to events.

7. ReactJS – Conditional Rendering, Rendering Lists, React Forms

- a) Write a program for conditional rendering.
- b) Write a program for rendering lists.
- c) Write a program for working with different form fields using react forms.

8. ReactJS – React Router, Updating the Screen

- a) Write a program for routing to different pages using react router.
- b) Write a program for updating the screen.

9. ReactJS – Hooks, Sharing data between Components

- a) Write a program to understand the importance of using hooks.
- b) Write a program for sharing data between components.

10. MongoDB – Installation, Configuration, CRUD operations

- a) Install MongoDB and configure ATLAS
- b) Write MongoDB queries to perform CRUD operations on document using insert(), find(), update(), remove()

11. MongoDB – Databases, Collections and Records

- a) Write MongoDB queries to Create and drop databases and collections.
- b) Write MongoDB queries to work with records using find(), limit(), sort(), createIndex(), aggregate () .

12. Augmented Programs: (Any 2 must be completed)

- a) Design a to-do list application using NodeJS and ExpressJS.
- b) Design a Quiz app using ReactJS.
- c) Complete the MongoDB certification from MongoDB University website.

Text Books:

1. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, 2nd edition, APress, O'Reilly.
2. Node.Js in Action, Mike Cantelon, Mark Harter, T.J. Holowaychuk, Nathan Rajlich, Manning Publications. (Chapters 1-11)
3. React Quickly, AzatMardan, Manning Publications (Chapters 1-8,12-14)

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Web Links:

1. ExpressJS - <https://www.tutorialspoint.com/expressjs>
2. ReactJS - <https://www.w3schools.com/REACT> (and) <https://react.dev/learn#>
3. MongoDB - <https://learn.mongodb.com/learning-paths/introduction-to-mongodb>

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year I Semester	USER INTERFACE DESIGN USING FLUTTER	L	T	P	C
		0	0	2	1

Course Objectives:

- Learns to Implement Flutter Widgets and Layouts
- Understands Responsive UI Design and with Navigation in Flutter
- Knowledge on Widgets and customize widgets for specific UI elements, Themes
- Understand to include animation apart from fetching data

List of Experiments:

Students need to implement the following experiments

1. a) Install Flutter and Dart SDK.
b) Write a simple Dart program to understand the basic language.
2. a) Explore various Flutter widgets (Text, Image, Container, etc.).
b) Implement different layout structures using Row, Column, and Stack widgets.
3. a) Design a responsive UI that adapts to different screen sizes.
4. a) Set up navigation between different screens using Navigator.
b) Implement media queries and breakpoints for responsiveness.
5. a) Learn about stateful and stateless widgets.
b) Implement state management using set State and Provider.
6. a) Create custom widgets for specific UI elements.
b) Apply styling using themes and custom styles.
7. a) Design a form with various input fields.
b) Implement form validation and error handling.
8. a) Add animations to UI elements using Flutter's animation framework.
b) Experiment with different types of animations (fade, slide, etc.).
9. a) Fetch data from a REST API.
b) Display the fetched data in a meaningful way in the UI.
10. a) Write unit tests for UI components.
b) Use Flutter's debugging tools to identify and fix issues.

Text Books:

1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development.
2. Rap Payne, Beginning App Development with Flutter: Create Cross-Platform Mobile Apps 1st Edition, Apres
3. Richard Rose, Flutter & Dart Cookbook, Developing Full stack Applications for the Cloud, O'reilly.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

OE-1	Principles of Operating Systems	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of the course is to make student

- Understand the basic concepts and principles of operating systems, including process management, memory management, file systems, and Protection
- Make use of process scheduling algorithms and synchronization techniques to achieve better performance of a computer system.
- Illustrate different conditions for deadlock and their possible solutions.

UNIT - I

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Free and Open-Source Operating Systems

System Structures: Operating System Services, User and Operating-System Interface, system calls, Types of System Calls, system programs, Operating system Design and Implementation, Operating system structure, Building and Booting an Operating System, Operating system debugging

UNIT - II

Processes: Process Concept, Process scheduling, Operations on processes, Inter-process communication.

Threads and Concurrency: Multithreading models, Thread libraries, Threading issues.

CPU Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling.

UNIT - III

Synchronization Tools: The Critical Section Problem, Peterson's Solution, Mutex Locks, Semaphores, Monitors, Classic problems of Synchronization. Deadlocks: system Model, Deadlock characterization, Methods for handling Deadlocks.

UNIT - IV

Memory-Management Strategies: Introduction, Contiguous memory allocation, Paging, Structure of the Page Table, Swapping.

Virtual Memory Management: Introduction, Demand paging, Copy-on-write, Page replacement, Allocation of frames, Thrashing

Storage Management: Overview of Mass Storage Structure, HDD Scheduling.

UNIT - V

File System: File System Interface: File concept, Access methods, Directory Structure; File system Implementation: File-system structure, File-system

Operations, Directory implementation, Allocation method, Free space management; File-System Internals: File-System Mounting, Partitions and Mounting, File Sharing.

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Text Books:

1. Operating System Concepts, Silberschatz A, Galvin P B, Gagne G, 10th Edition, Wiley, 2018.
2. Modern Operating Systems, Tanenbaum A S, 4th Edition, Pearson , 2016

Reference Books:

1. Operating Systems: A Concept Based Approach, D.M Dhamdhere, 3rd Edition, McGraw- Hill, 2013

Online Learning Resources:

1. <https://nptel.ac.in/courses/106/106/106106144/>
2. <http://peterindia.net/OperatingSystems.html>

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

OE-1	Computer Organization and Architecture	L	T	P	C
		3	0	0	3

Course Objectives:

The purpose of the course is to introduce principles of computer organization and the basic architectural concepts. It provides an in depth understanding of basic organization, design, programming of a simple digital computer, computer arithmetic, instruction set design, micro programmed control unit, pipelining and vector processing, memory organization and I/O systems

UNIT I:

Basic Structure Of Computers: Computer Types, Functional unit, Basic Operational concepts, Bus structures, Software, Performance, multiprocessors and multi computers.

Logic gates: Digital Logic gates, Two-level realizations using gates - AND-OR, OR-AND, NAND-NAND and NOR-NOR

UNIT II:

Sequential circuits I: Classification of sequential circuits (synchronous and asynchronous): basic flip-flops, truth tables and excitation tables (NAND RS latch, NOR RS latch, RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals). Conversion of flip-flop to flip-flop, Race around condition, Master J-K flipflop

Register Transfer Language And Micro-operations: Register Transfer language. Register Transfer Bus and memory transfers, Arithmetic Microoperations, Logic micro operations, shift micro operations, Arithmetic logic shift unit. Instruction codes. Computer Registers, Computer instructions, Instruction cycle.

UNIT III:

Micro Programmed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT IV:

Microprocessors: Evaluation of Microprocessors, CISC and RISC, Characteristics of Microprocessors

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory, Cache memories performance considerations, Virtual memories Introduction to Shift registers and RAID

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

UNIT V:

Input – Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupts, DMA, Input Output Processor, Serial Communication.

Textbooks:

1. Digital Logic and Computer Design, Moriss Mano, 11th Edition, Pearson Education.
2. Computer Organization, 5th ed., Hamacher, Vranesic and Zaky, TMH, 2002
3. Computer System Architecture, 3/e, Moris Mano, Pearson/PHI.

Reference Books:

1. Computer System Organization & Architecture, John D. Carpinelli, Pearson, 2008
2. Computer System Organization, Naresh Jotwani, TMH, 2009
3. Computer Organization & Architecture: Designing for Performance, 7th ed., William Stallings, PHI, 2006
4. Structured Computer Organization, Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year

II

Semester

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	COMPILER DESIGN	L	T	P	C
		3	0	0	3

Course Objectives:

Understand the basic concept of compiler design, and its different phases which will be helpful to construct new tools like LEX, YACC, etc.

UNIT I:

Lexical Analysis: Language Processors, Structure of a Compiler, Lexical Analysis, The Role of the Lexical Analyzer, Bootstrapping, Input Buffering, Specification of Tokens, Recognition of Tokens, Lexical Analyzer Generator-LEX, Finite Automata, Regular Expressions and Finite Automata, Design of a Lexical Analyzer Generator.

Syntax Analysis: The Role of the Parser, Context-Free Grammars, Derivations, Parse Trees, Ambiguity, Left Recursion, Left Factoring,

UNIT II:

Top-Down Parsing: Pre Processing Steps of Top-Down Parsing, Backtracking, Recursive Descent Parsing, LL (1) Grammars, Non-recursive Predictive Parsing, Error Recovery in Predictive Parsing.

Bottom-Up Parsing: Introduction, Difference between LR and LL Parsers, Types of LR Parsers, Shift Reduce Parsing, SLR Parsers, Construction of SLR Parsing Tables, More Powerful LR Parses, Construction of CLR (1) and LALR Parsing Tables, Dangling Else Ambiguity, Error Recovery in LR Parsing, Handling Ambiguity Grammar with LR Parsers.

UNIT III:

Syntax Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Applications of Syntax Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's. **Intermediate Code Generation:** Variants of Syntax Trees, Three Address Code, Types and Declarations, Translation of Expressions, Type Checking, Control Flow, Backpatching, Intermediate Code for Procedures.

UNIT IV:

Code Optimization: The Principle Sources of Optimization, Basic Blocks, Optimization of Basic Blocks, Structure Preserving Transformations, Flow Graphs, Loop Optimization, Data-Flow Analysis, Peephole Optimization

UNIT V:

Run Time Environments: Storage Organization, Run Time Storage Allocation, Activation Records, Procedure Calls, Displays. **Code Generation:** Issues in the Design of a Code Generator, Object Code Forms, Code Generation Algorithm, Register Allocation and Assignment.

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Text Books:

1. Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, Pearson, 2007.

Reference Books:

1. Compiler Construction, Principles and Practice, Kenneth C Louden, Cengage Learning, 2006
2. Modern compiler implementation in C, Andrew W Appel, Revised edition, Cambridge University Press.
3. Optimizing Compilers for Modern Architectures, Randy Allen, Ken Kennedy, Morgan Kauffmann, 2001.
4. Levine, J.R., T. Mason and D. Brown, Lex and Yacc, edition, O'Reilly & Associates, 1990

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	CLOUD COMPUTING	L	T	P	C
		3	0	0	3

Course Objectives:

- To explain the evolving utility computing model called cloud computing.
- To introduce the various levels of services offered by cloud.
- To discuss the fundamentals of cloud enabling technologies such as distributed computing, service-oriented architecture and virtualization.
- To emphasize the security and other challenges in cloud computing.
- To introduce the advanced concepts such as containers, serverless computing and cloud-centric Internet of Things.

UNIT -I: Introduction to Cloud Computing Fundamentals

Cloud computing at a glance, defining a cloud, cloud computing reference model, types of services (IaaS, PaaS, SaaS), cloud deployment models (public, private, hybrid), utility computing, cloud computing characteristics and benefits, cloud service providers (Amazon Web Services, Microsoft Azure, Google AppEngine).

UNIT-II: Cloud Enabling Technologies

Ubiquitous Internet, parallel and distributed computing, elements of parallel computing, hardware architectures for parallel computing (SISD, SIMD, MISD, MIMD), elements of distributed computing, Inter-process communication, technologies for distributed computing, remote procedure calls (RPC), service-oriented architecture (SOA), Web services, virtualization.

UNIT-III: Virtualization and Containers

Characteristics of virtualized environments, taxonomy of virtualization techniques, virtualization and cloud Computing, pros and cons of virtualization, technology examples (XEN, VMware), building blocks of containers, container platforms (LXC, Docker), container orchestration, Docker Swarm and Kubernetes, public cloud VM (e.g. Amazon EC2) and container (e.g. Amazon Elastic Container Service) offerings.

UNIT-IV: Cloud computing challenges

Economics of the cloud, cloud interoperability and standards, scalability and fault tolerance, energy efficiency in clouds, federated clouds, cloud computing security, fundamentals of computer security, cloud security architecture, cloud shared responsibility model, security in cloud deployment models.

UNIT -V: Advanced concepts in cloud computing

Serverless computing, Function-as-a-Service, serverless computing architecture, public cloud (e.g. AWS Lambda) and open-source (e.g. OpenFaaS) serverless platforms, Internet of Things (IoT), applications, cloud-centric IoT and layers, edge and fog computing, DevOps, infrastructure-as-code, quantum cloud computing.

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Text Books:

1. Mastering Cloud Computing, 2nd edition, Rajkumar Buyya, Christian Vecchiola, Thamarai Selvi, ShivanandaPoojara, Satish N. Srirama, Mc Graw Hill, 2024.
2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.

Reference Books:

1. Cloud Computing, Theory and Practice, Dan C Marinescu, 2nd edition, MK Elsevier, 2018.
2. Essentials of cloud Computing, K. Chandrasekhran, CRC press, 2014.
3. Online documentation and tutorials from cloud service providers (e.g., AWS, Azure, GCP)

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	CRYPTOGRAPHY & NETWORK SECURITY	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of this course are to explore the working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, public key algorithms, design issues and working principles of various authentication protocols and various secure communication standards including Kerberos, IPsec, and SSL/TLS.

UNIT I:

Basic Principles: Security Goals, Cryptographic Attacks, Services and Mechanisms, Mathematics of Cryptography- integer arithmetic, modular arithmetic, matrices, linear congruence.

UNIT II:

Symmetric Encryption: Mathematics of Symmetric Key Cryptography-algebraic structures, GF(2^n) Fields, Introduction to Modern Symmetric Key Ciphers-modern block ciphers, modern stream ciphers, Data Encryption Standard- DES structure, DES analysis, Security of DES, Multiple DES, Advanced Encryption Standard-transformations, key expansions, AES ciphers, Analysis of AES.

UNIT III:

Asymmetric Encryption: Mathematics of Asymmetric Key Cryptography-primes, primality testing, factorization, CRT, Asymmetric Key Cryptography- RSA crypto system, Rabin cryptosystem, Elgamal Crypto system, ECC

UNIT IV:

Data Integrity, Digital Signature Schemes & Key Management: Message Integrity and Message Authentication-message integrity, Random Oracle model, Message authentication, Cryptographic Hash Functions-whirlpool, SHA-512, Digital Signature- process, services, attacks, schemes, applications, Key Management-symmetric key distribution, Kerberos.

UNIT V:

Network Security-I: Security at application layer: PGP and S/MIME, Security at the Transport Layer: SSL and TLS, **Network Security-II :** Security at the Network Layer: IPsec-two modes, two security protocols, security association, IKE, ISAKMP, System Security-users, trust, trusted systems, buffer overflow, malicious software, worms, viruses, IDS, Firewalls.

Textbooks:

1. Cryptography and Network Security, 3rd Edition Behrouz A Forouzan, Deb deep Mukhopadhyay, McGraw Hill,2015
2. Cryptography and Network Security,4th Edition, William Stallings, (6e) Pearson,2006
3. Everyday Cryptography, 1st Edition, Keith M.Martin, Oxford,2016

Reference Books:

1. Network Security and Cryptography, 1st Edition, Bernard Meneges, Cengage Learning,2018

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	SOFTWARE TESTING METHODOLOGIES	L	T	P	C
		3	0	0	3

Course Objectives

- To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- To develop skills in software test automation and management using the latest tools.

UNIT - I

Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT - II

Transaction Flow Testing: transaction flows, transaction flow testing techniques.

Data Flow testing: Basics of data flow testing, strategies in data flow testing, application of data flow testing.

Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT - III

Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT - IV

State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - V

Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like Jmeter/selenium/soapUI/Catalon).

Text Books:

1. Software Testing techniques - Baris Beizer, Dreamtech, second edition.
2. Software Testing Tools – Dr. K. V. K. K. Prasad, Dreamtech.

Reference Books:

1. The craft of software testing - Brian Marick, Pearson Education.
2. Software Testing Techniques – SPD(Oreille)
3. Software Testing in the Real World – Edward Kit, Pearson.
4. Effective methods of Software Testing, Perry, John Wiley.
5. Art of Software Testing – Meyers, John Wiley.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	CYBER SECURITY	L	T	P	C
		3	0	0	3

Course Objectives:

The aim of the course is to

- identify security risks and take preventive steps
- understand the forensics fundamentals
- understand the evidence capturing process
- understand the preservation of digital evidence

UNIT I: Introduction to Cybercrime: Introduction, Cybercrime: Definition and Origin of the Word, Cybercrime and Information Security, Cybercriminals, Classifications of Cybercrime, Cyberstalking, Cybercafe and Cybercrimes, Botnets, Attack Vector, Proliferation of Mobile and Wireless Devices, Security Challenges Posed by Mobile Devices, Attacks on Mobile/Cell Phones, Network and Computer Attacks.

UNIT II: Tools and Methods: Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors, Steganography, Sniffers, Spoofing, Session Hijacking, Buffer overflow, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks, Identity Theft (ID Theft), Foot Printing and Social Engineering, Port Scanning, Enumeration.

UNIT III: Cyber Crime Investigation: Introduction, Investigation Tools, eDiscovery, Digital Evidence Collection, Evidence Preservation, E-Mail Investigation, E-Mail Tracking, IP Tracking, E-Mail Recovery, Hands on Case Studies, Encryption and Decryption Methods, Search and Seizure of Computers, Recovering Deleted Evidence, Password Cracking.

UNIT IV: Computer Forensics and Investigations: Understanding Computer Forensics, Preparing for Computer Investigations, Current Computer Forensics Tools: Evaluating Computer Forensics Tools, Computer Forensics Software Tools, Computer Forensics Hardware Tools, Validating and Testing Forensics Software, Face, Iris and Fingerprint Recognition, Audio Video Analysis, Windows System Forensics, Linux System Forensics, Graphics and Network Forensics, E-mail Investigations, Cell Phone and Mobile Device Forensics.

UNIT V: Cyber Crime Legal Perspectives: Introduction, Cybercrime and the Legal Landscape around the World, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in India, Consequences of Not Addressing the Weakness in Information Technology Act, Digital

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment, Cyberlaw, Technology and Students: Indian Scenario.

Text Books:

1. Sunit Belapure Nina Godbole "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", WILEY, 2011.
2. Nelson Phillips and Enfinger Steuart, "Computer Forensics and Investigations", Cengage Learning, New Delhi, 2009.

Reference Books:

1. Michael T. Simpson, Kent Backman and James E. Corley, "Hands on Ethical Hacking and Network Defence", Cengage, 2019.
2. Computer Forensics, Computer Crime Investigation by John R. Vacca, Firewall Media, New Delhi.
3. Alfred Basta, Nadine Basta, Mary Brown and Ravinder Kumar "Cyber Security and Cyber Laws", Cengage, 2018.

E-Resources:

1. CERT-In Guidelines- <http://www.cert-in.org.in/>
2. <https://www.coursera.org/learn/introduction-cybersecurity-cyber-attacks> [Online Course]
3. <https://computersecurity.stanford.edu/free-online-videos> [Free Online Videos]
4. Nickolai Zeldovich. 6.858 Computer Systems Security. Fall 2014. Massachusetts Institute of Technology: MIT OpenCourseWare, <https://ocw.mit.edu> License:Creative CommonsBY-NC-SA.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	DEVOPS	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of this course are to:

- Describe the agile relationship between development and IT operations.
- Understand the skill sets and high-functioning teams involved in DevOps and related methods to reach a continuous delivery capability.
- Implement automated system update and DevOps lifecycle.

UNIT-I

Introduction to DevOps: Introduction to SDLC, Agile Model. Introduction to Devops. DevOps Features, DevOps Architecture, DevOps Lifecycle, Understanding Workflow and principles, Introduction to DevOps tools, Build Automation, Delivery Automation, Understanding Code Quality, Automation of CI/ CD. Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples

UNIT-II

Source Code Management (GIT): The need for source code control, The history of source code management, Roles and code, source code management system and migrations. What is Version Control and GIT, GIT Installation, GIT features, GIT workflow, working with remote repository, GIT commands, GIT branching, GIT staging and collaboration. **UNIT TESTING - CODE COVERAGE:** Junit, nUnit& Code Coverage with Sonar Qube, SonarQube - Code Quality Analysis.

UNIT-III

Build Automation - Continuous Integration (CI): Build Automation, What is CI Why CI is Required, CI tools, Introduction to Jenkins (With Architecture), jenkins workflow, jenkins master slave architecture, Jenkins Pipelines, **PIPELINE BASICS - Jenkins Master, Node, Agent, and Executor** Freestyle Projects & Pipelines, Jenkins for Continuous Integration, Create and Manage Builds, User Management in Jenkins Schedule Builds, Launch Builds on Slave Nodes.

UNIT-IV

Continuous Delivery (CD): Importance of Continuous Delivery, **CONTINUOUS DEPLOYMENT** CD Flow, Containerization with Docker: Introduction to Docker, Docker installation, Docker commands, Images & Containers, DockerFile, Running containers, Working with containers and publish to Docker Hub.

Testing Tools: Introduction to Selenium and its features, JavaScript testing.

UNIT-V

Configuration Management - ANSIBLE: Introduction to Ansible, Ansible tasks, Roles, Jinja templating, Vaults, Deployments using Ansible.

CONTAINERIZATION USING KUBERNETES(OPENSHIFT): Introduction to Kubernetes Namespace & Resources, CI/CD - On OCP, BC, DC &ConfigMaps, Deploying Apps on Openshift Container Pods. Introduction to Puppet master and Chef.

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Text Books:

1. Joyner, Joseph., Devops for Beginners: Devops Software Development Method Guide for Software Developers and It Professionals, 1st Edition Mihails Konoplows, 2015.
2. Alisson Machado de Menezes., Hands-on DevOps with Linux, 1st Edition, BPB Publications, India, 2021.

Reference Books:

1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley; ISBN-10
2. Gene Kim Je Humble, Patrick Debois, John Willis. The DevOps Handbook, 1st Edition, IT Revolution Press, 2016.
3. Verona, Joakim Practical DevOps, 1st Edition, Packt Publishing, 2016.
4. Joakim Verona. Practical Devops, Ingram short title; 2nd edition (2018). ISBN10: 1788392574
5. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications. ISBN: 9788126579952

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	MACHINE LEARNING	L	T	P	C
		3	0	0	3

Course Objectives:

The objectives of the course is to

- Define machine learning and its different types (supervised and unsupervised) and understand their applications.
- Apply supervised learning algorithms including decision trees and k-nearest neighbours (k-NN).
- Implement unsupervised learning techniques, such as K-means clustering.

UNIT-I: Introduction to Machine Learning: Evolution of Machine Learning, Paradigms for ML, Learning by Rote, Learning by Induction, Reinforcement Learning, Types of Data, Matching, Stages in Machine Learning, Data Acquisition, Feature Engineering, Data Representation, Model Selection, Model Learning, Model Evaluation, Model Prediction, Search and Learning, Data Sets.

UNIT-II: Nearest Neighbor-Based Models: Introduction to Proximity Measures, Distance Measures, Non-Metric Similarity Functions, Proximity Between Binary Patterns, Different Classification Algorithms Based on the Distance Measures ,K-Nearest Neighbor Classifier, Radius Distance Nearest Neighbor Algorithm, KNN Regression, Performance of Classifiers, Performance of Regression Algorithms.

UNIT-III: Models Based on Decision Trees: Decision Trees for Classification, Impurity Measures, Properties, Regression Based on Decision Trees, Bias–Variance Trade-off, Random Forests for Classification and Regression. The Bayes Classifier: Introduction to the Bayes Classifier, Bayes’ Rule and Inference, The Bayes Classifier and its Optimality, Multi-Class Classification, Class Conditional Independence and Naive Bayes Classifier (NBC)

UNIT-IV: Linear Discriminants for Machine Learning: Introduction to Linear Discriminants, Linear Discriminants for Classification, Perceptron Classifier, Perceptron Learning Algorithm, Support Vector Machines, Linearly Non-Separable Case, Non-linear SVM, Kernel Trick, Logistic Regression, Linear Regression, Multi-Layer Perceptrons (MLPs), Backpropagation for Training an MLP.

UNIT-V: Clustering : Introduction to Clustering, Partitioning of Data, Matrix Factorization, Clustering of Patterns, Divisive Clustering, Agglomerative Clustering, Partitional Clustering, K-Means Clustering, Soft Partitioning, Soft Clustering, Fuzzy C-Means Clustering, Rough Clustering, Rough K-Means Clustering Algorithm, Expectation Maximization-Based Clustering, Spectral Clustering.

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Text Books:

1. "Machine Learning Theory and Practice", M N Murthy, V S Ananthanarayana, Universities Press (India), 2024

Reference Books:

1. "Machine Learning", Tom M. Mitchell, McGraw-Hill Publication, 2017
2. "Machine Learning in Action", Peter Harrington, DreamTech
3. "Introduction to Data Mining", Pang-Ning Tan, Michel Stenbach, Vipin Kumar, 7th Edition, 2019.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	SOFTWARE PROJECT MANAGEMENT	L	T	P	C
		3	0	0	3

Course Objectives:

At the end of the course, the student shall be able to:

- To describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project
- To compare and differentiating organization structures and project structures
- To implement a project to manage project schedule, expenses and resources with the application of suitable project management tools

UNIT-I:

Conventional Software Management: The waterfall model, conventional software Management performance.

Evolution of Software Economics: Software Economics, pragmatic software cost estimation.

Improving Software Economics: Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections.

The old way and the new: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process.

UNIT-II:

Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases.

Artifacts of the process: The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts.

UNIT- III:

Model based software architecture: A Management perspective and technical perspective.

Work Flows of the process: Software process workflows, Iteration workflows.

Checkpoints of the process: Major milestones, Minor Milestones, Periodic status assessments.

Iterative Process Planning: Work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning.

UNIT- IV:

Project Organizations and Responsibilities: Line-of-Business Organizations, Project Organizations, evolution of Organizations. **Process Automation:** Automation Building blocks, The Project Environment. **Project Control and Process instrumentation:** The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation.

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

UNIT-V:

Agile Methodology, ADAPTING to Scrum, Patterns for Adopting Scrum, Iterating towards Agility.

Fundamentals of DevOps: Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system. DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack implementation, People aspect, processes

Text Books:

1. Software Project Management, Walker Royce, PEA, 2005.
2. Succeeding with Agile: Software Development Using Scrum, Mike Cohn, Addison Wesley.
3. The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations, Gene Kim , John Willis , Patrick Debois , Jez Humble, 1st Edition, O'Reilly publications, 2016.

Reference Books:

1. Software Project Management, Bob Hughes, 3/e, Mike Cotterell, TMH
2. Software Project Management, Joel Henry, PEA
3. Software Project Management in practice, Pankaj Jalote, PEA, 2005,
4. Effective Software Project Management, Robert K. Wysocki, Wiley, 2006.
5. Project Management in IT, Kathy Schwalbe, Cengage

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	MOBILE ADHOC NETWORKS	L	T	P	C
		3	0	0	3

Course Objectives:

From the course the student will learn

- Architect sensor networks for various application setups.
- Devise appropriate data dissemination protocols and model links cost.
- Understanding of the fundamental concepts of wireless sensor networks and has a basic knowledge of the various protocols at various layers.
- Evaluate the performance of sensor networks and identify bottlenecks.

UNIT I: Introduction to Ad Hoc Wireless Networks- Cellular and Ad Hoc Wireless Networks, Characteristics of MANETs, Applications of MANETs, Issues and Challenges of MANETs, Ad Hoc Wireless Internet, MAC protocols for Ad hoc Wireless Networks-Issues, Design Goals and Classifications of the MAC Protocols.

UNIT II: Routing Protocols for Ad Hoc Wireless Networks- Issues in Designing a Routing Protocol, Classifications of Routing Protocols, Topology-based versus Position-based Approaches, Issues and design goals of a Transport layer protocol, Classification of Transport layer solutions, TCP over Ad hoc Wireless Networks, Solutions for TCP over Ad Hoc Wireless Networks, Other Transport layer protocols.

UNIT III: Security protocols for Ad hoc Wireless Networks- Security in Ad hoc Wireless Networks, Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Key Management, Secure Routing in Ad hoc Wireless Networks, Cooperation in MANETs, Intrusion Detection Systems.

UNIT IV: Basics of Wireless Sensors and Applications- The Mica Mote, Sensing and Communication Range, Design Issues, Energy Consumption, Clustering of Sensors, Applications, Data Retrieval in Sensor Networks-Classification of WSNs, MAC layer, Routing layer, Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs.

UNIT V: Security in WSNs- Security in WSNs, Key Management in WSNs, Secure Data Aggregation in WSNs, Sensor Network Hardware-Components of Sensor Mote, Sensor Network Operating Systems-TinyOS, LA-TinyOS, SOS, RETOS, Imperative Language-nesC, **Dataflow Style Language**-TinyGALS, Node-Level Simulators, NS-2 and its sensor network extension, TOSSIM.

Text Books:

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

1. Ad Hoc Wireless Networks – Architectures and Protocols, 1st edition, C. Siva Ram Murthy, B. S. Murthy, Pearson Education, 2004
2. Ad Hoc and Sensor Networks – Theory and Applications, 2nd edition *Carlos Corderio Dharma P. Aggarwal*, World Scientific Publications / Cambridge University Press, March 2006

Reference Books:

1. Wireless Sensor Networks: An Information Processing Approach, 1st edition, *Feng Zhao, Leonidas Guibas*, Elsevier Science imprint, Morgan Kauffman Publishers, 2005, rp2009
2. Wireless Ad hoc Mobile Wireless Networks – Principles, Protocols and Applications, 1st edition, Subir Kumar Sarkar, et al., Auerbach Publications, Taylor & Francis Group, 2008
3. Ad hoc Networking, 1st edition, *Charles E. Perkins*, Pearson Education, 2001
4. Wireless Ad hoc Networking, 1st edition, *Shih-Lin Wu, Yu-Chee Tseng*, Auerbach Publications, Taylor & Francis Group, 2007
5. Wireless Sensor Networks – Principles and Practice, 1st edition, Fei Hu, Xiaojun Cao, An Auerbach book, CRC Press, Taylor & Francis Group, 2010

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	NATURAL LANGUAGE PROCESSING	L	T	P	C
		3	0	0	3

Course Objectives:

This course introduces the fundamental concepts and techniques of natural language processing (NLP).

- Students will gain an in-depth understanding of the computational properties of natural languages and the commonly used algorithms for processing linguistic information.
- The course examines NLP models and algorithms using both the traditional symbolic and the more recent statistical approaches.
- Enable students to be capable to describe the application based on natural language processing and to show the points of syntactic, semantic and pragmatic processing.

UNIT I:

INTRODUCTION: Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM – Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance.

UNIT II:

WORD LEVEL ANALYSIS: Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part- of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models.

UNIT III:

SYNTACTIC ANALYSIS: Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures, Unification of feature structures

UNIT IV:

SEMANTICS AND PRAGMATICS: Requirements for representation, First-Order Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods.

UNIT V:

DISCOURSE ANALYSIS AND LEXICAL RESOURCES: Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm – Coreference Resolution – Resources: Porter Stemmer, Lemmatizer, Penn Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC).

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Textbooks:

1. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, 2nd Edition, Daniel Jurafsky, James H. Martin -Pearson Publication,2014.
2. Natural Language Processing with Python, First Edition, Steven Bird, Ewan Klein and Edward Loper, O'Reilly Media,2009.

Reference Books:

1. Language Processing with Java and Ling Pipe Cookbook, 1st Edition, Breck Baldwin, Atlantic Publisher, 2015.
2. Natural Language Processing with Java, 2nd Edition, Richard M Reese, O'Reilly Media,2015.
3. Handbook of Natural Language Processing, Second, Nitin Indurkha and Fred J. Damerau, Chapman and Hall/CRC Press, 2010.Edition
4. Natural Language Processing and Information Retrieval, 3rd Edition, Tanveer Siddiqui, U.S. Tiwary, Oxford University Press,2008.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	BIG DATA ANALYTICS	L	T	P	C
		3	0	0	3

Course Objectives: This course is aimed at enabling the students to

- To provide an overview of an exciting growing field of big data analytics.
- To introduce the tools required to manage and analyze big data like Hadoop, NoSQL, Map Reduce, HIVE, Cassandra, Spark.
- To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- To optimize business decisions and create competitive advantage with Big Data analytics

UNIT I: big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics.

UNIT II: Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schema less databases, materialized views, distribution models, sharding, master-slave replication, peer- peer replication, shardingandreplication, consistency, relaxing consistency, version stamps, Working with Cassandra ,Table creation, loading and reading data.

UNIT III: Data formats, analyzing data with Hadoop, scaling out, Architecture of Hadoop distributed file system (HDFS), fault tolerance ,with data replication, High availability, Data locality , Map Reduce Architecture, Process flow, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization. Introduction to Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, Logical joins, Window functions, Optimization, Table partitioning, Bucketing, Indexing, Join strategies.

UNIT IV: Apache spark- Advantages over Hadoop, lazy evaluation, In memory processing, DAG, Spark context, Spark Session, RDD, Transformations- Narrow and Wide, Actions, Data frames ,RDD to Data frames, Catalyst optimizer, Data Frame Transformations, Working with Dates and Timestamps, Working with Nulls in Data, Working with Complex Types, Working with JSON, Grouping, Window Functions, Joins, Data Sources, Broadcast Variables, Accumulators, Deploying Spark- On-Premises Cluster Deployments, Cluster Managers- Standalone Mode, Spark on YARN , Spark Logs, The Spark UI- Spark UI History Server, Debugging and Spark First Aid

UNIT V: Spark-Performance Tuning, Stream Processing Fundamentals, Event-Time and State full Processing - Event Time, State full Processing, Windows on Event Time- Tumbling Windows, Handling Late Data with Watermarks, Dropping Duplicates in a Stream, Structured Streaming

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Basics - Core Concepts, Structured Streaming in Action, Transformations on Streams, Input and Output.

Text Books:

1. Big Data, Big Analytics: Emerging, Michael Minnelli, Michelle Chambers, and AmbigaDhiraj, 1st edition ,2013
2. SPARK: The Definitive Guide, Bill Chambers & Matei Zaharia, O'Reilley, 2018-first Edition.
3. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, First edition-2013.
4. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World Polyglot Persistence", Addison-Wesley Professional, 2012
5. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012

Reference Books:

1. "Hadoop Operations", O'Reilley, Eric Sammer, First Edition -2012.
 2. "Programming Hive", O'Reilley, E. Capriolo, D. Wampler, and J. Rutherglen, 2012.
 3. "HBase: The Definitive Guide", O'Reilley, Lars George, September 2011: First Edition..
 4. "Cassandra: The Definitive Guide", O'Reilley, Eben Hewitt, 2010.
- "Programming Pig", O'Reilley, Alan Gates, October 2011: First Edition

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	DISTRIBUTED OPERATING SYSTEM	L	T	P	C
		3	0	0	3

Course Objectives:

The main objective of the course is to introduce design issues and different message passing techniques in DOS, distributed systems, RPC implementation and its performance in DOS, distributed shared memory and resource management, distributed file systems and evaluate the performance in terms of fault tolerance, file replication as major factors

Unit I:

Fundamentals:

What is Distributed Computing Systems? Evolution of Distributed Computing System; Distributed Computing System Models; What is Distributed Operating System? Issues in Designing a Distributed Operating System; Introduction to Distributed Computing Environment(DCE).

Message Passing:

Introduction, Desirable features of a Good Message Passing System, Issues in PC by Message Passing, Synchronization, Buffering, Multi-datatype Messages, Encoding and Decoding of Message Data, Process Addressing, Failure Handling, Group Communication, Case Study: 4.3 BSD UNIX IPC Mechanism.

Unit II:Remote Procedure Calls:

Introduction, The RPC Model, Transparency of RPC, Implementing RPC Mechanism, Stub Generation, RPC Messages, Marshaling Arguments and Results, Server Management, Parameter-Passing Semantics, Call Semantics, Communication Protocols for RPCs, Complicated RPCs, Client-Server Binding, Exception Handling, Security, Some Special Types of RPCs, RPC in Heterogeneous Environments, Lightweight RPC, Optimization for Better Performance, Case Studies: Sun RPC

Unit III: Distributed Shared Memory:

Introduction, General Architecture of DSM systems, Design and Implementation Issues of DSM, Granularity, Structure of Shared Memory Space, Consistency Models, Replacement Strategy, Thrashing, Other approaches to DSM, Heterogeneous DSM, Advantages of DSM. Synchronization: Introduction, Clock Synchronization, Event Ordering, Mutual Exclusion, Dead Lock, Election Algorithms

Unit IV:Resource Management:

Introduction, Desirable Features of a Good Global Scheduling Algorithm, Task Assignment Approach, Load – Balancing Approach, Load – Sharing Approach Process Management: Introduction, Process Migration, Threads.

Unit V: Distributed File Systems:

Introduction, Desirable Features of a Good Distributed File System, File models, File–Accessing Models, File – Sharing Semantics, File – Caching Schemes, File Replication, Fault Tolerance, Atomic Transactions and Design Principles.

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Textbooks

1. Pradeep. K. Sinha: Distributed Operating Systems: Concepts and Design, PHI, 2007.

Reference Books:

1. Andrew S. Tanenbaum: Distributed Operating Systems, Pearson Education, 2013.
2. Ajay D. Kshemkalyani and MukeshSinghal, Distributed Computing: Principles, Algorithms and Systems, Cambridge University Press, 2008
3. SunitaMahajan, Seema Shan, “ Distributed Computing”, Oxford University Press,2015

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	CLOUD COMPUTING LAB	L	T	P	C
		0	0	3	1.5

Course Objectives:

- To introduce the various levels of services offered by cloud.
- To give practical knowledge about working with virtualization and containers.
- To introduce the advanced concepts such as serverless computing and cloud simulation.

Course Outcomes: At the end of the course, the student should be able to

- Demonstrate various service types, delivery models and technologies of a cloud computing environment.
- Distinguish the services based on virtual machines and containers in the cloud offerings.
- Assess the challenges associated with a cloud-based application.
- Discuss advanced cloud concepts such as serverless computing and cloud simulation.
- Examine various programming paradigms suitable to solve real world and scientific problems using cloud services.

List of Experiments:

1. Lab on web services
2. Lab on IPC, messaging, publish/subscribe
3. Install VirtualBox/VMware Workstation with different flavours of Linux or windows OS on top of windows8 or above.
4. Install a C compiler in the virtual machine created using VirtualBox and execute Simple Programs.
5. Create an Amazon EC2 instance and set up a web-server on the instance and associate an IP address with the instance. In the process, create a security group allowing access to port 80 on the instance.

OR

6. Do the same with OpenStack
7. Install Google App Engine. Create a hello world app and other simple web applications using python/java.
8. Start a Docker container and set up a web-server (e.g. apache2 or Python based Flask micro web framework) on the instance. Map the host directory as a data volume for the container.
9. Find a procedure to transfer the files from one virtual machine to another virtual machine. Similarly, from one container to another container.
10. Find a procedure to launch virtual machine using trystack (Online Openstack Demo Version)
11. Install Hadoop single node cluster and run simple applications like word count.
12. Utilize OpenFaaS – Serverless computing framework and demonstrate basic event driven function invocation.
13. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

Text Books:

1. Mastering Cloud Computing, 2nd edition, Rajkumar Buyya, Christian Vecchiola, Thamarai Selvi, ShivanandaPoojara, Satish N. Srirama, McGraw Hill, 2024.
2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.

Reference Books:

1. Cloud Computing, Theory and Practice, Dan C Marinescu, 2nd edition, MK Elsevier, 2018.
2. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.
3. Online documentation and tutorials from cloud service providers (e.g. AWS, Google App Engine)
4. Docker, Reference documentation, <https://docs.docker.com/reference/>
5. OpenFaaS, Serverless Functions Made Simple, <https://docs.openfaas.com/>

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

III Year II Semester	CRYPTOGRAPHY & NETWORK SECURITY LAB	L	T	P	C
		0	0	3	1.5

Course Objectives:

- To learn basic understanding of cryptography, how it has evolved, and some key encryption techniques used today.
- To understand and implement encryption and decryption using Ceaser Cipher, Substitution Cipher, Hill Cipher.

List of Experiments:

1. Write a C program that contains a string (char pointer) with a value 'Hello World'. The program should XOR each character in this string with 0 and displays the result.
2. Write a C program that contains a string (char pointer) with a value 'Hello World'. The program should AND or and XOR each character in this string with 127 and display the result
3. Write a Java program to perform encryption and decryption using the following algorithms:
 - a) Ceaser Cipher
 - b) Substitution Cipher
 - c) Hill Cipher
4. Write a Java program to implement the DES algorithm logic
5. Write a C/JAVA program to implement the BlowFish algorithm logic
6. Write a C/JAVA program to implement the Rijndael algorithm logic.
7. Using Java Cryptography, encrypt the text "Hello world" using BlowFish. Create your own key using Java key tool.
8. Write a Java program to implement RSA Algorithm
9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript. Consider the end user as one of the parties (Alice) and the JavaScript application as other party (bob).
10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

OE-2	Principles of Database Management Systems	L	T	P	C
		3	0	0	3

Course Objectives:

The main objective of the course is to

- Introducing database management systems and to give a good formal foundation on the relational model of data
- Introducing the concepts of SQL
- Demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- Provide an overview of the physical design of a database system, by discussing database storage techniques

UNIT I:

Introduction: Database system, Characteristics (Database Vs File System), Database Users, Advantages of Database systems, Database applications. Brief introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier schema architecture for data independence; Database system structure, environment, Centralized and Client Server architecture for the database.

UNIT II:

Entity Relationship Model: Introduction, Representation of entities, attributes, entity set, relationship, relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER Diagrams. Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, relation, importance of null values, constraints (Domain, Key constraints, integrity constraints) and their importance.

UNIT III:

BASIC SQL: Simple Database schema, data types, table definitions (create, alter), different DML operations (insert, delete, update).

SQL: Basic SQL querying (select and project) using where clause, arithmetic & logical operations, SQL functions(Date and Time, Numeric, String conversion).Creating tables with relationship, implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, view(updatable and nonupdatable), relational set operations.

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)

UNIT IV:

Schema Refinement (Normalization): Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency Lossless join and dependency preserving decomposition, (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF).

UNIT V:

Transaction Concept: Transaction State, ACID properties, Concurrent

Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability, lock based, time stamp based, optimistic, concurrency protocols, Deadlocks, Failure Classification, Storage, Recovery and Atomicity, Recovery algorithm.

Text Books:

- 1) Database Management Systems, 3rd edition, Raghurama Krishnan, Johannes Gehrke, TMH (For Chapters 2, 3, 4)
- 2) Database System Concepts, 5th edition, Silberschatz, Korth, Sudarsan, TMH (For Chapter 1 and Chapter 5)

Reference Books:

- 1) Introduction to Database Systems, 8th edition, C J Date, Pearson.
- 2) Database Management System, 6th edition, Ramez Elmasri, Shamkant B. Navathe, Pearson
- 3) Database Principles Fundamentals of Design Implementation and Management, 10th edition, Corlos Coronel, Steven Morris, Peter Robb, Cengage Learning, 2022

Web-Resources:

- 1) <https://nptel.ac.in/courses/106/105/106105175/>
- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01275806667282022456_shared/overview

Approved by

Bos Members

1. A.S.N.Chakravarthy [University Nominee]
2. Dr.M.V.P Chandra Sekar [Subject Expert]
3. Dr.K.V. Krishnakishore [Subject Expert]
4. Dr.Kuppani Sathish [Chairman BOS]

Principal

TIRUMALA ENGINEERING COLLEGE

(AUTONOMOUS)

Accredited by NAAC(A+) & NBA, (An ISO 9001:2015 Certified Institution)

(Approved by AICTE New Delhi & affiliated to JNTUK, Kakinada)

Jonnalagadda(V), Narasaraopet(M), Palnadu(Dt) - 522601.

web: www.tecnrt.org

email: tecnrt@gmail.com

B. Tech- CSE (R23-COURSE STRUCTURE & SYLLABUS)